
CS4800 Algorithms and Data Professor Fell
Fall 2009 October 28, 2009

CS 4800 - Final - Review material

Old stuff

Big-O notation Though you won’t be quizzed directly on Big-O notation, you should be able to
apply it to analyzing algorithms, e.g. ones that you produce a problem solutions.

Recurrence relations As with Big-O.

Basic Arithmetic Most of you still remember the algorithms that you learned in elementary
school. You should now have an idea of how they work on a computer and how and when
they can be sped up.

Modular arithmetic Never forget this.

Binary search Never forget this.

Merge sort, Partition in quicksort, Insertion sort You really should be able to tell me about
these ten years from now even if you don’t remember all the details.

New stuff

You should know these algorithms and how to analyze their running times.

• Chapter 3 - Decomposition of Graphs

– Adjacency lit and adjacency matrix representation

– Depth-first search in undirected graphs

– Depth-first search in directed graphs

Topological sort

– Strongly connected components

• Chapter 4 - Paths in Graphs

– Distances

– Breadth-first search

– Lengths on edges (weighted graphs)

– Dijkstras algorithm

Priority queue implementations: array and binary heap

– Heap sort

– NO – Shortest paths in the presence of negative edges

– Shortest paths in dags .

1

• Chapter 5 - Greedy algorithms

– Minimum spanning trees

– Huffman encoding

– Horn formulas

– Set cover

• Chapter 6- Dynamic programming

– Shortest paths in dags, revisited

– Longest increasing subsequences

– Edit distance

– Knapsack

• Chapter7 NO - Linear programming (NO– reductions)

– An introduction to linear programming

– The simplex algorithm

Graphs

A undirected graph G = (V,E) where each edge e ∈ E is 2-way and represented by a set {u, v} with
u, v ∈ V . We also write (u, v) when we are talking about following the edge from u to v.
A graph G = (V,E) where each edge e ∈ E is 1-way and represented by an ordered pair (u, v) with
u, v ∈ V . The edge (u, v) goes from u to v.

A graph can be represented by an n× n adjacency matrix where n = |V |. The (i,)th entry is

aij =

{

1 if there is an edge from vi to vj

0 otherwise.

or an adjacency list that consists of |V | linked lists, one per vertex. The linked list for vertexu
holds the names of vertices to which u has an outgoing edge, i.e. vertices v for which (u, v) ∈ E.

Depth-first search

You should understand procedures explore(G, v) on page 84 and dfs(G) on page 85 using the
previsit and postvisit on page 87.

You should be able to perform depth-first search in a directed or undirected graph, label the vertices
with pre and post numbers and label the edges as tree or back in an undirected graph, tree, forward,
back, or cross in a directed graph.

Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a non-child descendant in the DFS tree.

Back edges lead to an ancestor in the DFS tree.

2

Cross edges lead to neither descendant nor ancestor; they therefore lead to a node that has
already been completely explored (that is, already post-visited).

Strongly connected components - the algorithm

1. Run DFS on GR.

2. Run DFS on G from vertex in 1 with highest post number. Remove those vertices from
G (or their component from the dag) and repeat starting with the remaining vertex highest
post number from step 1.

Breadth-first search

BFS(G, s)
for all u ∈ V

dist(u) =∞
dist(u) = 0
Q = [s] (queue containing just s)
while Q is not empty

u = eject(Q)
for all edges (u, v) ∈ E

if dist(v) =∞
inject(Q, v)
dist(v) = dist(u) + 1

Shortest Path

dijkstra(G, s)
Initialize dist(s) = 0, other dist(·) values to ∞, R = { } (the “known region”)
while R 6= V :

Pick the node v 6∈ V with smallest dist(·)
Add v to R
for all edges (v, z) ∈ E:

if dist(z) > dist(v) + l(v, z):
dist(z) = dist(v) + l(v, z)

Insert : Add a new element to the set.

Decrease-key : Accommodate the decrease in key value of a particular element. (Notifies the
queue that a certain key value has been decreased.)

Delete-min : Return the element with the smallest key, and remove it from the set.

Make-queue : Build a priority queue out of the given elements with the given key values. (In
many implementations, this is significantly faster than inserting the elements one by one.)

3

Priority queue implementations Binary heap wins over array implementation as soon as |E| <
|V |2/ log |V |.

• Good for both sparse and dense graphs.

• sparse, |E| = O(|V |), running time is O(|V | log |V |).

• dense, |E| = O(|V |2), running time is O(|V |2).

• intermetiate, |E| = O(|V |1+δ) running time is O(||E|). -linear!

Fibonacci heap is best but hard to implement. Insert averages (amortized cost) O(1).

Max-Heapify(A, i, n)

l = Left(i)
r = Right(i)
if l ≤ n and A[l] > A[i]

largest = l
else largest = i
if r ≤ n and A[r] > A[largest]

largest = r
if largest 6= i

exchange A[i] with A[largest]
Max-Heapify(A, largest , n)

Building a Heap

Build-Max-Heap(A,n)

for i = ⌊n/2⌋ downto 1
Max-Heapify(A, i, n)

The heapsort algorithm

Given an input array, the heapsort algorithm acts as follows:

• Build a max-heap from the array.

• The root is the maximum element so swap it with the element in the last position in
the array.

• Decrease the heap size by 1, and call Max-Heapify on the new (possibly incorrectly-
placed) root.

• Repeat until only one node (the smallest element) remains, and therefore is in the
correct place in the array.

Analysis

Build-Max-Heap: O(n)
for loop: n− 1 times

4

swap elements: O(1)
Max-Heapify: O(n lg n)

Total time: O(n lg n).

Minimum spanning trees

Kruskal’s algorithm

Repeatedly add the next lightest edge that doesnt produce a cycle.

kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we
Output: A minimum spanning three defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
sort the edges E by weight
for all edges {u, v} ∈ E,in increasing order of weight:

if find(u) 6= find(v):
add edge {u, v} to X
union(u, v)

Data structure for disjoint sets

Union by rank:

store a set is as a directed tree. Nodes of the tree are elements of the set, in no particular order,
and each has parent pointers that eventually lead up to the root of the tree. This root element is
a representative, or name, for the set. It is distinguished from the other elements by the fact that
its parent pointer is a self-loop.

makeset(x)
π(x) = x
rank(x) = 0

find(x)
if x 6= π(x): π(x) = find(π(x))
return π(x)

union(x, y)
rx = find(x)
ry = find(y)
if rx = ry return

if rank(rx) > rank(ry)
π(ry) = rx

else

π(rx) = ry

if rank(rx) = rank(ry): rank(ry) = rank(ry) + 1

5

The amortized cost of a sequence of n union find operations starting from an empty data structure
averages O(1) down from O(log n).

Prims algorithm for MST
The intermediate set of edges X always forms a subtree, and S is chosen to be the set of this trees
vertices.

On each iteration, the subtree defined by X grows by one edge, namely, the lightest edge between
a vertex in S and a vertex outside S.

Huffman encoding

Huffman encoding is a variable-length encoding in which just one bit is used for the most frequently
occurring symbol.

Huffman(f)
Input: An array f [1 . . n] of frequencies
Output: An encoding tree with n leaves

let H be a priority queue of integers, ordered by f
for i = 1 to n

Insert(H, i)
for k = n + 1 to 2n− 1

i = deletemin(H), j = deletemin(H)
create a node numbered k with children i, j
f [k] = f [i] + f [j]
insert(H, k)

This algorithm can be described in terms of priority queue operations and takes O(nlogn) time if
a binary heap is used.

Horn formulas Knowledge about variables is represented by two kinds of clauses:

1. implication: left side is an and of 0 or more variables.

(z ∧ w)⇒ u

u ∨ z ∨ w

2. negative clause: an or of 0 or more negative literals.

(x ∨ u ∨ y)

6

Input: a Horn formula
Output: a satisfying assignment, if one exists

set all variables to false

while there is an implication that is not satisfied
set the right-hand variable of the implication to true

if all pure negative clauses are satisfied:
return the assignment

else

return formula is not satisfiable

Set Cover - greedy algorithm

Input: A set of elements B; sets S1, . . . , Sm ⊆ B
Output: A selection of the Si whose union is B.
Cost: Number of sets picked.

Repeat until all elements of B are covered:
Pick the set Si with the largest number of uncovered elements.

Claim Suppose B contains n elements and that the optimal cover consists of k sets. Then the
greedy algorithm will use at most k ln n sets.

Dynamic Programming

Dynamic programming is a very powerful algorithmic paradigm in which a problem is solved by
identifying a collection of subproblems and tackling them one by one, smallest first, using the
answers to small problems to help figure out larger ones, until the whole lot of them is solved.

Shortest path in dags

initialize all dist(·) values to ∞
dist(s) = 0
for each v ∈ V \{s}, in linearized order:
dist(v) = min(u,v)∈E{dist(u) + l(u, v)}

Edit distance

for i = 0, 1, 2, . . . ,m
E(i, 0) = i

for j = 0, 1, 2, . . . , n
E(0, j) = j

for i = 1, 2, . . . ,m
for j = 1, 2, . . . , n

E(i, j) = min{1 + E(i − 1, j), 1 + E(i, j − 1),diff(i, j) + E(i− 1, j − 1)}
return E(m,n)

7

Longest common subsequence

LCS-Length(X,Y,m, n)
let b[1 . . m, 1 . . n] and c[0 . . m, 0 . . n] be new tables
for i = 1 to nm

c[i, 0] = 0
for j = 1 to n

c[0, j] = 0
for i = 1 to nm

for j = 1 to n
if xi = yj

c[i, j] = c[i− 1, j − 1] + 1
b[i, j] = “տ′′

else if c[i− 1, j] ≥ c[i, j − 1]
c[i, j] = c[i − 1, j]
b[i, j] = “ ↑′′

else c[i, j] = c[i, j − 1]
b[i, j] = “←′′

return c and b

Print-LCS(b,X, i, j)
if i = 0 or j = 0

return

if b[i, j] = “տ′′

Print-LCS(b,X, i − 1, j − 1)
print x

elseif b[i, j] == “ ↑′′

Print-LCS(b,X, i − 1, j)
else Print-LCS(b,X, i, j − 1)

Knapsack

Fractional-Knapsack(v,w,W)
load = 0
i = 1
while load < W and i ≤ n

if wi ≤W − load
take all of item i

else take (W − load)/wi of item i
add what was taken to load
i = i + 1

Time: O(n lg n) to sort, O(n) thereafter.

Knapsack with repetition

Define K(w) = maximum value achievable with a knapsack of capacity w.

8

K(0) = 0
for w = 1 to W :

K(w) = max{K(w − wi) + vi : wi ≤ w}
return K(W)

This fills a one-dimensional table of length W + 1 from left to right.
Each entry can take O(n) to compute so the running time is O(nW).
This is EXPONENTIAL!

Knapsack without repetition Add a second parameter, 0 ≤ j ≤ n:
K(w, j) = maximum value achievable using a knapsack of capacity w and items 1, . . . , j.
We seek (K(W,n).

Initialize all K(0, j) = 0 and K(w, 0) = 0
for w = t to n

for w = 1 to W :
if wj > w

K(w, j) = K(w, j − 1)
else K(w, j) = max{K(w − wj , j − 1) + vj,K(w, j − 1)}

return K(W,n)

9

