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Today’s Topics 

•  Vectors – review Shirley et al. 2.4 
•  Rasters Shirley et al. 3.0 - 3.2.1 
•  Rasterizing Lines  

•  Shirley et al. 
8.0 - 8.1.1 
Implicit 2D lines pp. 30-35 
Parametric Lines p. 41   

  Antialiasing  
  Line Attributes 
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Vectors 

•  A vector describes a length and a direction. 

a

b

a = b 

a zero length vector 

1 
a unit vector 
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Vector Operations 

a

a
b

b

-d 

c-d 

Vector Sum 

a -a 

Vector Difference 

d 
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Cartesian Coordinates 
•  Any two non-zero, non-parallel 2D vectors 

form a 2D basis. 
•  Any 2D vector can be written uniquely as 

a linear combination of two 2D basis 
vectors. 

•  x and y (or i and j) denote unit vectors 
parallel to the x-axis and y-axis. 

•  x and y form an orthonormal 2D basis. 
                            a = xax + yay 
                                               a =( xa, ya)   or   

•  x, y and z form an orthonormal 3D basis. 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

a

a

x
a

y
or a =(ax,ay)  
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Vector Length 

Vector a =( xa, ya )   

( ) ( ) 2 2Length Norm= = = +a ax ya a a

ya 

xa 

a 
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Dot Product 

Dot Product 
a =( xa, ya )   b =( xb, yb ) 

  ab = xa xb + ya yb  

  ab = ||a||  ||b||cos(φ) 

a 

b φ 
θ 

xa = ||a||cos(θ+φ) 

xb = ||b||cos(θ) 

ya = ||a||sin(θ+φ) 

yb = ||b||sin(θ) 
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Projection 

a =( xa, ya )   b =( xb, yb ) 
ab = ||a||||b||cos(φ) 

 The length of the projection 
of a onto b is given by 

a 

b 
φ 

ab 

   
a→b = a cos ϕ( ) = aib

b
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Output Devices 

•  a raster is a rectangular array of pixels (picture 
elements) 

•  common raster output devices include CRT and 
LCD monitors, ink jet and laser printers 

•  typically considered as top-to-bottom array of 
left-to-right rows, because that is how CRTs are 
(were) typically scanned 

•  for this reason, device (e.g. on-screen) 
coordinate frame typically has origin in upper 
left,  axis aims to right, and  axis aims down 

9/13/12 9 
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Device Resolution 
•  (native) resolution of the device is the dimensions  (note 

this is reverse of typical way we write matrix dimensions) 
of its raster output hardware 

•  typical resolutions for monitors are 640x480 (VGA, the 
archaic but celebrated Video Graphics Array), 800x600, 
1024x768, 1280x1024, 1600x1200, etc 

•  higher resolution is generally “better” because finer detail 
can be represented 
  more computation required for more pixels though, and more 

pixels makes the display hardware more expensive 
  however monitors usually can display lower or higher (within 

some limits) resolution images than their native resolution by 
scaling (we will study how to scale images later in the course) 

9/13/12 10 
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Sub-pixel Display 
http://en.wikipedia.org/wiki/Pixel 

9/13/12 11 
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How are Rasters 
Represented? 

•  for a monochrome image, each pixel corresponds to one 
bit (also called a binary image) 

•  typically in graphics we use at least greyscale images, 
where bits are used to represent the intensity at each 
pixel. The number of gray levels at each pixel is usually a 
multiple of 8. 

•  for a color image, compose multiple greyscale images, 
where each corresponds to a different color component. 
Three images corresponding to red, green, and blue 
color components are one typical arrangement. The 
images can be stored as independent planes or they 
may be interleaved. 

9/13/12 12 
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in-memory representation 
of a raster 

•  monochrome image is typically a linear array of r x c x B 
bytes, where r and c are the number of rows and 
columns in the raster, and B is the number of bytes per 
pixel 

•  value of pixel at location (i, j)  is thus stored in the B  
bytes at memory location (ic + j)B  relative to the 
beginning of the array 
  the order of bytes within the pixel value is determined by the byte 

order of the computer, which may be little-endian (least 
significant byte first) or big-endian (most significant byte first).  

  Nowadays, little-endian is more common (e.g. Intel x86). Big-
endian may still be encountered on e.g. PowerPC architectures 
(which is what Apple used in Mac computers up to around 2006). 

9/13/12 13 
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Color Image 
Representation 

•  for color images, either store as (typically three) 
separate monochrome rasters (planes), or 
interleave by packing all color components for a 
pixel into a contiguous block of memory 
(interleaved is more common now) 

•  the order of the color components, as well as the 
number of bits per component, is called the pixel 
format 

9/13/12 14 
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Common Pixel Formats 
•  common pixel formats today include  

  24-bit RGB (br = bg = bb = 8) (“over 16 million colors!”) 
  32-bit RGB (like 24 bit but with one byte of padding) 
  16-bit 5:6:5 RGB (br = 5, bg =6,  bb = 5) (human eye is 

most sensitive to green; common for lower-quality 
video because it looks ok for images of real-world 
scenes and uses 2 bytes per pixel, reducing file size) 

•   (ic + j)B works with  
  B = {(br + bg + bb +padding)}/8 

•  byte ordering (little- vs big-endian) only matters 
within each color component and if some br > 8   

9/13/12 15 
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Frame Buffer 
•  In-memory raster is called a frame buffer when hardware 

is set up so that changes to memory contents drive pixel 
colors on the display itself. Most modern display 
hardware has a such a frame buffer. 
  in fact, generally more than one, and can switch among them 
  a common way to produce a smooth-looking animation is to use 

two buffers: the front buffer is rendered to the screen, and the 
back buffer is not 

  this is called double buffering 
  Each new frame of the animation is drawn onto the back buffer. 

Because it can take some time (hopefully not too long) to draw, 
this avoids seeing a “partial frame”. 

  once the drawing is complete, the buffers are swapped 

9/13/12 16 
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Rasterization 

•  how to render images of geometry, say 
line segments or triangles, onto a raster 
display? 

•  need to figure out what pixels to “light up” 
to draw the shape 

•  this is the process of rasterization 
•  will study line segment rasterization now 

and triangles later in the course 

9/13/12 17 
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Vector Output 
•  historically, vector displays were developed first 
•  a CRT is made to scan line segments by steering an 

electron beam from start to end of each segment (can 
generalize to curves) 

•  potentially more efficient because only need to scan 
along the actual line segments vs always scanning a 
raster across the whole screen 

•  but hard to draw images of real-world scenes, and how 
to deal with color? 

•  nowadays, vector output is sometimes still encountered 
on a pen plotter, but even these are mostly antiques 

9/13/12 18 
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Vector Representation 
•  some software systems represent graphics in a vector 

form.  PostScript, PDF (portable document format), and SVG 
(scalable vector graphics) 

•  in a vector format, a picture is stored not as an array of 
pixels, but as a list of instructions about how to draw it 
  vector format is “better” for some kinds of images, particularly 

line drawings and images (e.g. cartoons or computer art) 

•  since the actual geometry, vs a sampling of it, is stored, 
vector images can generally be scaled to larger or 
smaller sizes without any loss of quality 
  vector images may also require less memory to store, and may 

be more compressible 

9/13/12 19 
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(3,1) 

(0,3) 

(0,0) 

Pixel Coordinates 

y 

x 

x = -0.5 

y = -0.5 

y = 3.5 
x = 4.5 
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(3,2) 

(0,0) 

(0,3) 

Pixel Coordinates 
y 

x 

x = -0.5 

y = 3.5 

y = -.5 
x = 4.5 
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What Makes a Good Line? 

•  Not too jaggy 
•  Uniform thickness along a line 
•  Uniform thickness of lines at different 

angles 
•  Symmetry, Line(P,Q) = Line(Q,P) 

•  A good line algorithm should be fast. 
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Line Drawing 
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Line Drawing 
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Which Pixels Should We 
Color? 

•  Given P0 = (x0, y0), P1 = (x1, y1) 
•  We could use the equation of the line: 

  y = mx + b 
  m = (y1 – y0)/(x1 – x0) 
  b = y1 - mx1 

•  And a loop 
for x = x0 to x1 

 y = mx + b 
 draw (x, y) 

This calls for real multiplication 
for each pixel 

This only works if x0 <= x1 and |m| <= 1. 
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Midpoint Algorithm 
•  Pitteway 1967 
•  Van Aiken abd Nowak 1985 
•  Draws the same pixels as Bresenham Algorithm 

1965. 
•  Uses integer arithmetic and incremental 

computation. 
•  Uses a decision function to decide on the next point 
•  Draws the thinnest possible line from  

 (x0, y0) to (x1, y1) that has no gaps. 
•  A diagonal connection between pixels is not a gap. 
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Implicit Equation of a Line 

(x0, y0) 

(x1, y1) f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0 

We will assume x0 <= x1 

and that m = (y1 – y0 )/(x1 - x0 ) 

is in [0, 1]. 

f(x,y) > 0 

f(x,y) < 0 
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Basic Form of the Algotithm 

 y = y0 

 for x = x0 to x1 do 
  draw (x, y) 
  if (some condition) then 
   y = y + 1 

 Since m is in [0, 1], as we move from x to x+1,  
 the y value stays the same or goes up by 1. 

We want to compute this 
condition efficiently. 
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Above or Below the Midpoint? 



College of Computer and Information Science, Northeastern University September 13, 2012 30 

Finding the Next Pixel 

Assume we just drew (x, y). 
For the next pixel, we must decide between  

  (x+1, y) and (x+1, y+1). 
The midpoint between the choices is 

   (x+1, y+0.5). 
If the line passes below (x+1, y+0.5), we 

draw the bottom pixel. 
Otherwise, we draw the upper pixel. 
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The Decision Function 

if f(x+1, y+0.5) < 0   
  // midpoint below line 
  y = y + 1 

f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0 

How do we compute f(x+1, y+0.5)  
  incrementally? 
  using only integer arithmetic? 
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Incremental Computation 
f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0 

 f(x + 1, y) = f(x, y) + (y0 – y1) 
 f(x + 1, y + 1) = f(x, y) + (y0 – y1) + (x1 - x0) 

y = y0 
d = f(x0 + 1, y + 0.5) 
for x = x0 to x1 do 

  draw (x, y) 
  if d < 0 then 
   y = y + 1 
   d = d + (y0 – y1) + (x1 - x0) 
  else 
   d = d + (y0 – y1) 
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Integer Decision Function 
f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0 

f(x0 + 1, y + 0.5)  
 = (y0 – y1)(x0 + 1) +(x1 - x0)(y + 0.5) + x0 y1 - x1 y0 

2f(x0 + 1, y + 0.5)  
 = 2(y0 – y1)(x0 + 1) +(x1 - x0)(2y + 1) + 2x0 y1 - 2x1 y0 

    
2f(x, y)  = 0 if (x, y) is on the line. 

  < 0 if (x, y) is below the line. 
  > 0 if (x, y) is above the line. 
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Midpoint Line Algorithm 
y = y0 
d = 2(y0 – y1)(x0 + 1) +(x1 - x0)(2y0 + 1) + 2x0 y1 - 2x1 y0 
for x = x0 to x1 do 

  draw (x, y) 
  if d < 0 then 
   y = y + 1 
   d = d + 2(y0 – y1) + 2(x1 - x0) 
  else 
   d = d + 2(y0 – y1) 

These are constants 
and can be computed 
before the loop. 
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Line Attributes 

•  line width 
•  dash patterns 
•  end caps: butt, round, square  

9/13/12 35 
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Joins: round, bevel, miter 

9/13/12 36 
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Some Lines 
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Some Lines Magnified 
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Antialiasing by Downsampling 
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Antialiasing by Downsampling 
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Antialiasing by Downsampling 


