
College of Computer and Information Science, Northeastern University September 13, 2012 1

CS 4300
Computer Graphics

Prof. Harriet Fell
Fall 2012

Lecture 5 – September 13, 2012

College of Computer and Information Science, Northeastern University September 13, 2012 2

Today’s Topics

•  Vectors – review Shirley et al. 2.4
•  Rasters Shirley et al. 3.0 - 3.2.1
•  Rasterizing Lines

•  Shirley et al.
8.0 - 8.1.1
Implicit 2D lines pp. 30-35
Parametric Lines p. 41

  Antialiasing
  Line Attributes

College of Computer and Information Science, Northeastern University September 13, 2012 3

Vectors

•  A vector describes a length and a direction.

a

b

a = b

a zero length vector

1
a unit vector

College of Computer and Information Science, Northeastern University September 13, 2012 4

Vector Operations

a

a
b

b

-d

c-d

Vector Sum

a -a

Vector Difference

d

College of Computer and Information Science, Northeastern University September 13, 2012 5

Cartesian Coordinates
•  Any two non-zero, non-parallel 2D vectors

form a 2D basis.
•  Any 2D vector can be written uniquely as

a linear combination of two 2D basis
vectors.

•  x and y (or i and j) denote unit vectors
parallel to the x-axis and y-axis.

•  x and y form an orthonormal 2D basis.
 a = xax + yay
 a =(xa, ya) or

•  x, y and z form an orthonormal 3D basis.

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

a

a

x
a

y
or a =(ax,ay)

College of Computer and Information Science, Northeastern University September 13, 2012 6

Vector Length

Vector a =(xa, ya)

() () 2 2Length Norm= = = +a ax ya a a

ya

xa

a

College of Computer and Information Science, Northeastern University September 13, 2012 7

Dot Product

Dot Product
a =(xa, ya) b =(xb, yb)

 ab = xa xb + ya yb

 ab = ||a|| ||b||cos(φ)

a

b φ
θ

xa = ||a||cos(θ+φ)

xb = ||b||cos(θ)

ya = ||a||sin(θ+φ)

yb = ||b||sin(θ)

College of Computer and Information Science, Northeastern University September 13, 2012 8

Projection

a =(xa, ya) b =(xb, yb)
ab = ||a||||b||cos(φ)

 The length of the projection
of a onto b is given by

a

b
φ

ab

a→b = a cos ϕ() = aib

b

College of Computer and Information Science, Northeastern University

Output Devices

•  a raster is a rectangular array of pixels (picture
elements)

•  common raster output devices include CRT and
LCD monitors, ink jet and laser printers

•  typically considered as top-to-bottom array of
left-to-right rows, because that is how CRTs are
(were) typically scanned

•  for this reason, device (e.g. on-screen)
coordinate frame typically has origin in upper
left, axis aims to right, and axis aims down

9/13/12 9

College of Computer and Information Science, Northeastern University

Device Resolution
•  (native) resolution of the device is the dimensions (note

this is reverse of typical way we write matrix dimensions)
of its raster output hardware

•  typical resolutions for monitors are 640x480 (VGA, the
archaic but celebrated Video Graphics Array), 800x600,
1024x768, 1280x1024, 1600x1200, etc

•  higher resolution is generally “better” because finer detail
can be represented
  more computation required for more pixels though, and more

pixels makes the display hardware more expensive
  however monitors usually can display lower or higher (within

some limits) resolution images than their native resolution by
scaling (we will study how to scale images later in the course)

9/13/12 10

College of Computer and Information Science, Northeastern University

Sub-pixel Display
http://en.wikipedia.org/wiki/Pixel

9/13/12 11

College of Computer and Information Science, Northeastern University

How are Rasters
Represented?

•  for a monochrome image, each pixel corresponds to one
bit (also called a binary image)

•  typically in graphics we use at least greyscale images,
where bits are used to represent the intensity at each
pixel. The number of gray levels at each pixel is usually a
multiple of 8.

•  for a color image, compose multiple greyscale images,
where each corresponds to a different color component.
Three images corresponding to red, green, and blue
color components are one typical arrangement. The
images can be stored as independent planes or they
may be interleaved.

9/13/12 12

College of Computer and Information Science, Northeastern University

in-memory representation
of a raster

•  monochrome image is typically a linear array of r x c x B
bytes, where r and c are the number of rows and
columns in the raster, and B is the number of bytes per
pixel

•  value of pixel at location (i, j) is thus stored in the B
bytes at memory location (ic + j)B relative to the
beginning of the array
  the order of bytes within the pixel value is determined by the byte

order of the computer, which may be little-endian (least
significant byte first) or big-endian (most significant byte first).

  Nowadays, little-endian is more common (e.g. Intel x86). Big-
endian may still be encountered on e.g. PowerPC architectures
(which is what Apple used in Mac computers up to around 2006).

9/13/12 13

College of Computer and Information Science, Northeastern University

Color Image
Representation

•  for color images, either store as (typically three)
separate monochrome rasters (planes), or
interleave by packing all color components for a
pixel into a contiguous block of memory
(interleaved is more common now)

•  the order of the color components, as well as the
number of bits per component, is called the pixel
format

9/13/12 14

College of Computer and Information Science, Northeastern University

Common Pixel Formats
•  common pixel formats today include

  24-bit RGB (br = bg = bb = 8) (“over 16 million colors!”)
  32-bit RGB (like 24 bit but with one byte of padding)
  16-bit 5:6:5 RGB (br = 5, bg =6, bb = 5) (human eye is

most sensitive to green; common for lower-quality
video because it looks ok for images of real-world
scenes and uses 2 bytes per pixel, reducing file size)

•  (ic + j)B works with
  B = {(br + bg + bb +padding)}/8

•  byte ordering (little- vs big-endian) only matters
within each color component and if some br > 8

9/13/12 15

College of Computer and Information Science, Northeastern University

Frame Buffer
•  In-memory raster is called a frame buffer when hardware

is set up so that changes to memory contents drive pixel
colors on the display itself. Most modern display
hardware has a such a frame buffer.
  in fact, generally more than one, and can switch among them
  a common way to produce a smooth-looking animation is to use

two buffers: the front buffer is rendered to the screen, and the
back buffer is not

  this is called double buffering
  Each new frame of the animation is drawn onto the back buffer.

Because it can take some time (hopefully not too long) to draw,
this avoids seeing a “partial frame”.

  once the drawing is complete, the buffers are swapped

9/13/12 16

College of Computer and Information Science, Northeastern University

Rasterization

•  how to render images of geometry, say
line segments or triangles, onto a raster
display?

•  need to figure out what pixels to “light up”
to draw the shape

•  this is the process of rasterization
•  will study line segment rasterization now

and triangles later in the course

9/13/12 17

College of Computer and Information Science, Northeastern University

Vector Output
•  historically, vector displays were developed first
•  a CRT is made to scan line segments by steering an

electron beam from start to end of each segment (can
generalize to curves)

•  potentially more efficient because only need to scan
along the actual line segments vs always scanning a
raster across the whole screen

•  but hard to draw images of real-world scenes, and how
to deal with color?

•  nowadays, vector output is sometimes still encountered
on a pen plotter, but even these are mostly antiques

9/13/12 18

College of Computer and Information Science, Northeastern University

Vector Representation
•  some software systems represent graphics in a vector

form. PostScript, PDF (portable document format), and SVG
(scalable vector graphics)

•  in a vector format, a picture is stored not as an array of
pixels, but as a list of instructions about how to draw it
  vector format is “better” for some kinds of images, particularly

line drawings and images (e.g. cartoons or computer art)

•  since the actual geometry, vs a sampling of it, is stored,
vector images can generally be scaled to larger or
smaller sizes without any loss of quality
  vector images may also require less memory to store, and may

be more compressible

9/13/12 19

College of Computer and Information Science, Northeastern University September 13, 2012 20

(3,1)

(0,3)

(0,0)

Pixel Coordinates

y

x

x = -0.5

y = -0.5

y = 3.5
x = 4.5

College of Computer and Information Science, Northeastern University September 13, 2012 21

(3,2)

(0,0)

(0,3)

Pixel Coordinates
y

x

x = -0.5

y = 3.5

y = -.5
x = 4.5

College of Computer and Information Science, Northeastern University September 13, 2012 22

What Makes a Good Line?

•  Not too jaggy
•  Uniform thickness along a line
•  Uniform thickness of lines at different

angles
•  Symmetry, Line(P,Q) = Line(Q,P)

•  A good line algorithm should be fast.

College of Computer and Information Science, Northeastern University September 13, 2012 23

Line Drawing

College of Computer and Information Science, Northeastern University September 13, 2012 24

Line Drawing

College of Computer and Information Science, Northeastern University September 13, 2012 25

Which Pixels Should We
Color?

•  Given P0 = (x0, y0), P1 = (x1, y1)
•  We could use the equation of the line:

  y = mx + b
  m = (y1 – y0)/(x1 – x0)
  b = y1 - mx1

•  And a loop
for x = x0 to x1

 y = mx + b
 draw (x, y)

This calls for real multiplication
for each pixel

This only works if x0 <= x1 and |m| <= 1.

College of Computer and Information Science, Northeastern University September 13, 2012 26

Midpoint Algorithm
•  Pitteway 1967
•  Van Aiken abd Nowak 1985
•  Draws the same pixels as Bresenham Algorithm

1965.
•  Uses integer arithmetic and incremental

computation.
•  Uses a decision function to decide on the next point
•  Draws the thinnest possible line from

 (x0, y0) to (x1, y1) that has no gaps.
•  A diagonal connection between pixels is not a gap.

College of Computer and Information Science, Northeastern University September 13, 2012 27

Implicit Equation of a Line

(x0, y0)

(x1, y1) f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0

We will assume x0 <= x1

and that m = (y1 – y0)/(x1 - x0)

is in [0, 1].

f(x,y) > 0

f(x,y) < 0

College of Computer and Information Science, Northeastern University September 13, 2012 28

Basic Form of the Algotithm

 y = y0

 for x = x0 to x1 do
 draw (x, y)
 if (some condition) then
 y = y + 1

 Since m is in [0, 1], as we move from x to x+1,
 the y value stays the same or goes up by 1.

We want to compute this
condition efficiently.

College of Computer and Information Science, Northeastern University September 13, 2012 29

Above or Below the Midpoint?

College of Computer and Information Science, Northeastern University September 13, 2012 30

Finding the Next Pixel

Assume we just drew (x, y).
For the next pixel, we must decide between

 (x+1, y) and (x+1, y+1).
The midpoint between the choices is

 (x+1, y+0.5).
If the line passes below (x+1, y+0.5), we

draw the bottom pixel.
Otherwise, we draw the upper pixel.

College of Computer and Information Science, Northeastern University September 13, 2012 31

The Decision Function

if f(x+1, y+0.5) < 0
 // midpoint below line
 y = y + 1

f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0

How do we compute f(x+1, y+0.5)
 incrementally?
 using only integer arithmetic?

College of Computer and Information Science, Northeastern University September 13, 2012 32

Incremental Computation
f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0

 f(x + 1, y) = f(x, y) + (y0 – y1)
 f(x + 1, y + 1) = f(x, y) + (y0 – y1) + (x1 - x0)

y = y0
d = f(x0 + 1, y + 0.5)
for x = x0 to x1 do

 draw (x, y)
 if d < 0 then
 y = y + 1
 d = d + (y0 – y1) + (x1 - x0)
 else
 d = d + (y0 – y1)

College of Computer and Information Science, Northeastern University September 13, 2012 33

Integer Decision Function
f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0

f(x0 + 1, y + 0.5)
 = (y0 – y1)(x0 + 1) +(x1 - x0)(y + 0.5) + x0 y1 - x1 y0

2f(x0 + 1, y + 0.5)
 = 2(y0 – y1)(x0 + 1) +(x1 - x0)(2y + 1) + 2x0 y1 - 2x1 y0

2f(x, y) = 0 if (x, y) is on the line.

 < 0 if (x, y) is below the line.
 > 0 if (x, y) is above the line.

College of Computer and Information Science, Northeastern University September 13, 2012 34

Midpoint Line Algorithm
y = y0
d = 2(y0 – y1)(x0 + 1) +(x1 - x0)(2y0 + 1) + 2x0 y1 - 2x1 y0
for x = x0 to x1 do

 draw (x, y)
 if d < 0 then
 y = y + 1
 d = d + 2(y0 – y1) + 2(x1 - x0)
 else
 d = d + 2(y0 – y1)

These are constants
and can be computed
before the loop.

College of Computer and Information Science, Northeastern University

Line Attributes

•  line width
•  dash patterns
•  end caps: butt, round, square

9/13/12 35

College of Computer and Information Science, Northeastern University

Joins: round, bevel, miter

9/13/12 36

College of Computer and Information Science, Northeastern University September 13, 2012 37

Some Lines

College of Computer and Information Science, Northeastern University September 13, 2012 38

Some Lines Magnified

College of Computer and Information Science, Northeastern University September 13, 2012 39

Antialiasing by Downsampling

College of Computer and Information Science, Northeastern University September 13, 2012 40

Antialiasing by Downsampling

College of Computer and Information Science, Northeastern University September 13, 2012 41

Antialiasing by Downsampling

