CS 4300 Computer Graphics

Prof. Harriet Fell
Fall 2012
Lecture 4 - September 12, 2012

What is color?

- from physics, we know that the wavelength of a photon (typically measured in nanometers, or billionths of a meter) determines its apparent color
- we cannot see all wavelengths, but only the visible spectrum from around 380 to 750 nm

Where are the other colors?

- but where are the following colors: "brown", "pink", "white", ...?
- clearly, the color spectrum does not actually contain all colors; some colors are non-spectral
- generally, a large number of photons with different wavelengths are simultaneously impinging on any given location of your retina

- the actual incident light is not of a single wavelength, but can be described by a spectral histogram
- the histogram represents the relative quantity of photons of each wavelength

Human Perception of Color

- the human eye cannot determine the exact histogram
- in fact just representing a complete spectral histogram exactly would require an infinite amount of space because it's a continuous quantity
- the biological solution is another form of sampling
- three types of cone cells respond (with the equivalent of a single number each) to the degree to which the actual incident histogram is similar to response histograms with peaks near red, green, and blue

- so the original continous histogram impinging on one location of your retina is reduced to three measurements
- (actually, there is a fourth rod cell type, which is mainly active in low light conditions)
- color blindness is typically caused by anomalies in the types of cone cells
- other animals also have different cone cells
- because we have converted a continuous object into a set of discrete samples, we have to consider aliasing
- different incident histograms, called metamers, may be mapped to the same set of cone cell responses
- how many distinct colors can be seen?
- one way to think about it is to know that each cone cell type can distinguish between about 100 intensity levels of the associated response curve, and then to take a constructive approach
- there are $\sim 1 M$ ways to combine cone cell responses, so an average human can distinguish roughly that many colors
- the biology of human cone cells is the not only the reason we often use RGB to represent color; in fact, it defines color. Color is not an intrinsic property of light, but rather a result of the interaction between human cone cells and histograms of incident light.

From the Hubble

Hubble Site Link

Color

www.thestagecrew.com

Red, Green, and Blue Light

Adding R, G, and B Values

http://en.wikipedia.org/wiki/RGB

RGB Color Cube

RGB Color Cube the Dark Side

 $(0,0,1)$

Doug Jacobson's RGB Hex Triplet Color Chart

Making Colors Darker

$(1,0,0)$	$(.5,0,0)$	$(0,0,0)$
$(0,1,0)$	$(0, .5,0)$	$(0,0,0)$
$(0,0,1)$	$(0,0, .5)$	$(0,0,0)$
$(0,1,1)$	$(0, .5, .5)$	$(0,0,0)$
$(1,0,1)$	$(.5,0, .5)$	$(0,0,0)$
$(1,1,0)$	$(.5, .5,0)$	$(0,0,0)$

Getting Darker, Left to Right

$$
\begin{aligned}
& \text { for (int b = 255; b >= 0; b--) } \\
& \text { c = new Color(b, 0, 0); g.setPaint(c); } \\
& \text { g.fillRect(} \left.800+3^{*}(255-b), 50,3,150\right) ; \\
& \text { c = new Color(0, b, 0); g.setPaint(c); } \\
& \text { g.fillRect(800+3*(255-b), 200, 3, 150); } \\
& \text { c = new Color(0, 0, b); g.setPaint(c); } \\
& \text { g.fillRect(800+3*(255-b), 350, 3, 150); } \\
& \text { c = new Color(0, b, b); g.setPaint(c); } \\
& \text { g.fillRect(800+3*(255-b), 500, 3, 150); } \\
& \text { c = new Color(b, 0, b); g.setPaint(c); } \\
& \text { g.fillRect(800+3*(255-b), 650, 3, 150); } \\
& \text { c = new Color(b, b, 0); g.setPaint(c); } \\
& \text { g.fillRect(800+3*(255-b), 800, 3, 150); }
\end{aligned}
$$

Making Pale Colors

Getting Paler, Left to Right

 for (int w = 0; w < 256; w++) K c = new Color(255, w, w); g.setPaint(c); g.fillRect(3*w, 50, 3, 150);c = new Color(w, 255, w); g.setPaint(c); g.fillRect(3*w, 200, 3, 150);
c = new Color(w, w, 255); g.setPaint(c); g.fillRect(3*w, 350, 3, 150);
c = new Color(w, 255, 255); g.setPaint(c); g.fillRect(3^{*} w, 500, 3, 150);
c = new Color(255,w, 255); g.setPaint(c); g.fillRect(3^{*} w, 650, 3, 150);
c = new Color(255, 255, w); g.setPaint(c); g.fillRect(3^{*} w, 800, 3, 150);

Additive and Subtractive Color Space

- sometimes RGB are considered "additive" colors because they form a basis for the color space relative to black
- CMY can similarly be considered "subtractive" colors because, effectively
- cyan+red = white
- magenta+green = white
- yellow+blue $=$ white

Display vs. Print

- additive colors typically used when light is generated by an output device (e.g. CRT, LCD)
- subtractive colors typically used when printing on white paper
- sometimes RGB and CMY are considered distinct color spaces

HSV Color Space

- hue: the basic color, or chromaticity
- saturation: how "deep" the color is (vs "pastel")
- value: the brightness of the color

RGB to HSV

- HSV is again a 3 dimensional space, but it is typically considered to use cylindrical coordinates
- this is mainly a construction to decompose the three dimensional color space in a way that is more useful to human designers
- also often useful in machine vision algorithms, which simulate our theories of (aspects of) human vision
- can visualize HSV space as a "morph" of RGB space
- "stretch" the white and black vertices up and down
- "line up" the remaining six vertices along a common horizontal plane
- for HSV, put the white vertex back onto plane
- (a variation, HSL, keeps white and black symmetrically above and below)

Try the color picker

