

CS 4300 Computer Graphics

Prof. Harriet Fell Fall 2012 Lecture 4 – September 12, 2012

What is color?

- from physics, we know that the wavelength of a photon (typically measured in nanometers, or billionths of a meter) determines its apparent color
- we cannot see all wavelengths, but only the visible spectrum from around 380 to 750 nm

Where are the other colors?

- but where are the following colors: "brown", "pink", "white", ...?
- clearly, the color spectrum does not actually contain all colors; some colors are non-spectral
- generally, a large number of photons with different wavelengths are simultaneously impinging on any given location of your retina

Marty Vona's sketch

- the actual incident light is not of a single wavelength, but can be described by a spectral histogram
- the histogram represents the relative quantity of photons of each wavelength

Human Perception of Color

- the human eye cannot determine the exact histogram
- in fact just representing a complete spectral histogram exactly would require an infinite amount of space because it's a continuous quantity
- the biological solution is another form of sampling
- three types of cone cells respond (with the equivalent of a single number each) to the degree to which the actual incident histogram is similar to response histograms with peaks near red, green, and blue

- so the original continous histogram impinging on one location of your retina is reduced to three measurements
- (actually, there is a fourth rod cell type, which is mainly active in low light conditions)
- color blindness is typically caused by anomalies in the types of cone cells
- other animals also have different cone cells

- because we have converted a continuous object into a set of discrete samples, we have to consider *aliasing*
 - different incident histograms, called metamers, may be mapped to the same set of cone cell responses
 - how many distinct colors can be seen?
 - one way to think about it is to know that each cone cell type can distinguish between about 100 intensity levels of the associated response curve, and then to take a constructive approach
 - there are ~1M ways to combine cone cell responses, so an average human can distinguish roughly that many colors
- the biology of human cone cells is the not only the reason we often use RGB to represent color; in fact, it defines color. Color is not an intrinsic property of light, but rather a result of the interaction between human cone cells and histograms of incident light.

From the Hubble

Hubble Site Link

www.thestagecrew.com

Adding R, G, and B Values

http://en.wikipedia.org/wiki/RGB

September 11, 2012 ©College of Computer and Information Science, Northeastern University

RGB Color Cube The Dark Side

Doug Jacobson's RGB Hex Triplet Color Chart

RGB Hex Triplet Color Chart E-mail-ware,What a concept! Jacobson and say "Thanks?". Jacobson and say "Thanks?".													
		FFFFFF		FFCCFF		FF99FF		FF66FF		FF33FF	FFØØFF		
100 A		FFFFCC		FFCCCC		FF99CC		FF66CC		FF33CC	FFØØCC	<i>2</i>	
		FFFF99		FFCC99		FF9999		FF6699		FF3399	FF0099		
EEEEEE		FFFF66		FFCC66		FF9966		FF6666		FF3366	FF0066	00FF00	
DODDOD		FFFF33		FFCC33		FF9933		FF6633		FF3333	FFØØ33	ØØEEØØ	
		FFFFØØ		FFCCØØ		FF9900		FF6600		FF3300	FF0000	00DD00	
ввевев		CCEEEE		CCCCFF		CC99FF		CC66FF		CC33FF	CCØØFF	00CC00	
		CCFFCC		CCCCCC		CC99CC		CC66CC		CC33CC	CCØØCC	ØØBBØØ	
999999		CCFF99		cccc99		CC99999		CC6699		CC3399	CC0099	00AA00	
888888		CCFF66		CCCC66		CC9966		CC6666		CC3366	CC0066	009900	
777777		CCFF33		CCCC33		CC9933		CC6633		CC33333	CCØØ33	008800	
666666		CCFFØØ		CCCC00		CC9900		CC6600		CC3300	CC0808	007700	
555555		99FFFF		99CCFF		9999FF		9966FF		9933FF	9900FF	006680	
444444		99FFCC		990000		9999CC		9966CC		9933CC	9900CC	005500	
333333		99FF99		990099		9999999		996699		993399	9900999	004400	
222222		99FF66		990066		999966		996666		993366	990066	003300	
111111		99FF33		99CC33		999933		996633		993333	990033	002200	
000000		99FFØØ		990000		999900		996600		993300	990000	001100	
FF0000		66FFFF		66CCFF		6699FF		6666FF		6633FF	6600FF	0000FF	
EE0800		66FFCC		66CCCC		6699CC		6666CC		6633CC	6600CC	0000EE	
DD0000		66FF99		66CC99		669999		666699		663399	660099	0000DD	
CC0808		66FF66		66CC66		669966		666666		663366	660266	0000CC	
BB0000		66FF33		66CC33		669933		666633		663333	660033	0000BB	
00004A		66FFØØ		66CC00		669900		666600		663300	660808	0000AA	
990808		33FFFF		33CCFF		3399FF		3366FF		3333FF	3300FF	0000999	
880000		33FFCC		33CCCC		3399CC		3366CC		3333CC	3300CC	000088	
770000		33FF99		330099		339999		336699		333399	330099	000077	
660808		33FF66		33CC66		339966		336666		333366	330066	000066	
550000		33FF33		33CC33		339933		336633		333333	330033	000055	
440200		33FFØØ		330000		339900		336600		333300	330000	000044	
330000		ØØFFFF		ØØCCFF		0099FF		0066FF		0033FF	0000FF	000033	
220808		ØØFFCC		ØØCCCC		0099CC		0066CC		0033CC	0000CC	000022	
110000		00FF99		ØØCC99		0099999		006699		003399	0000999	000011	
		00FF66		00CC66		009966		006666		003366	0000666		
		00FF33		ØØCC33		009933		006633		003333	000033		
		00FF00		000000		009900		006600		003300	000000		
				Cop	yright	All Rights R	ougla: tesen	s R. Jacobso /ed	877) 1				

Making Colors Darker

(1, 0, 0)	(.5, 0, 0)	(0, 0, 0)
(0, 1, 0)	(0, .5, 0)	(0, 0, 0)
(0, 0, 1)	(0, 0, .5)	(0, 0, 0)
(0, 1, 1)	(0, .5, .5)	(0, 0, 0)
(1, 0, 1)	(.5, 0, .5)	(0, 0, 0)
(1, 1, 0)	(.5, .5, 0)	(0, 0, 0)

Getting Darker, Left to Right

for (int b = 255; b >= 0; b--){ **c = new Color(b, 0, 0);** g.setPaint(c); g.fillRect(800+3*(255-b), 50, 3, 150); c = new Color(0, b, 0); g.setPaint(c);g.fillRect(800+3*(255-b), 200, 3, 150); **c = new Color(0, 0, b);** g.setPaint(c); g.fillRect(800+3*(255-b), 350, 3, 150); c = new Color(0, b, b); g.setPaint(c); g.fillRect(800+3*(255-b), 500, 3, 150); c = new Color(b, 0, b); g.setPaint(c); g.fillRect(800+3*(255-b), 650, 3, 150); c = new Color(b, b, 0); g.setPaint(c);g.fillRect(800+3*(255-b), 800, 3, 150);

Making Pale Colors

(1, 0, 0)	(1, .5, .5)	(1, 1, 1)
(0, 1, 0)	(.5, 1, .5)	(1, 1, 1)
(0, 0, 1)	(.5, .5, 1)	(1, 1, 1)
(0, 1, 1)	(.5, 1, 1)	(1, 1, 1)
(1, 0, 1)	(1, .5, 1)	(1, 1, 1)
(1, 1, 0)	(1, 1, .5)	(1, 1, 1)

Getting Paler, Left to Right

for (int w = 0; w < 256; w++){

- **c = new Color(255, w, w);** g.setPaint(c); g.fillRect(3*w, 50, 3, 150);
- **c = new Color(w, 255, w);** g.setPaint(c); g.fillRect(3*w, 200, 3, 150);
- **c = new Color(w, w, 255);** g.setPaint(c); g.fillRect(3*w, 350, 3, 150);
- **c = new Color(w, 255, 255);** g.setPaint(c); g.fillRect(3*w, 500, 3, 150);
- **c = new Color(255,w, 255);** g.setPaint(c);
- g.fillRect(3*w, 650, 3, 150);
- **c = new Color(255, 255, w);** g.setPaint(c); g.fillRect(3*w, 800, 3, 150);

}

Additive and Subtractive Color Space

- sometimes RGB are considered "additive" colors because they form a basis for the color space relative to black
- CMY can similarly be considered "subtractive" colors because, effectively
 - \circ cyan+red = white
 - o magenta+green = white
 - o yellow+blue = white

Display vs. Print

- additive colors typically used when light is generated by an output device (e.g. CRT, LCD)
- subtractive colors typically used when printing on white paper
- sometimes RGB and CMY are considered distinct color spaces

HSV Color Space

- hue: the basic color, or chromaticity
- saturation: how "deep" the color is (vs "pastel")
- value: the brightness of the color

September 11, 2012

RGB to HSV

- HSV is again a 3 dimensional space, but it is typically considered to use *cylindrical coordinates*
 - this is mainly a construction to decompose the three dimensional color space in a way that is more useful to human designers
 - also often useful in machine vision algorithms, which simulate our theories of (aspects of) human vision
 - can visualize HSV space as a "morph" of RGB space
 - *"stretch" the white and black vertices up and down*
 - *"line up" the remaining six vertices along a common horizontal plane*
 - for HSV, put the white vertex back onto plane
 - (a variation, HSL, keeps white and black symmetrically above and below)

Try the color picker

