CS4310
 Graduate Computer Graphics

Prof. Harriet Fell
Fall 2012
Lecture 27 - November 5, 2012

Recursive Ray Tracing

Adventures of the 7 Rays - Watt

Specular Highlight on Outside of Shere

Recursive Ray Tracing
Adventures of the 7 Rays - Watt

Specular Highlight on Inside of Sphere

Recursive Ray Tracing

Adventures of the 7 Rays - Watt

Reflection and Refraction of Checkerboard

Recursive Ray Tracing

Adventures of the 7 Rays - Watt

Refraction Hitting Background

Recursive Ray Tracing

Adventures of the 7 Rays - Watt

Local Diffuse Plus Reflection from Checkerboard

Recursive Ray Tracing

Adventures of the 7 Rays - Watt

Local Diffuse in Shadow from Transparent Sphere

Recursive Ray-Tracing

- How do we know which rays to follow?
- How do we compute those rays?
- How do we organize code so we can follow all those different rays?
select center of projection(cp) and window on view plane; for (each scan line in the image) \{
for (each pixel in scan line) \{
determine ray from the cp through the pixel; pixel = RT_trace(ray, 1);\}\}
// intersect ray with objects; compute shade at closest intersection
// depth is current depth in ray tree
RT_color RT_trace (RT_ray ray; int depth)\{
determine closest intersection of ray with an object;
if (object hit) \{
compute normal at intersection;
return RT_shade (closest object hit, ray, intersection, normal, depth);\}
else
return BACKGROUND_VALUE;
\}
// Compute shade at point on object,
// tracing rays for shadows, reflection, refraction.
RT_color RT_shade (
RT_object object, // Object intersected
RT_ray ray, // Incident ray
RT_point point, // Point of intersection to shade
RT_normal normal,// Normal at point
int depth) // Depth in ray tree
\{
RT_color color; // Color of ray
RT_ray rRay, tRay, sRay;// Reflected, refracted, and shadow ray color = ambient term ; for (each light) \{
sRay = ray from point to light ;
if (dot product of normal and direction to light is positive) \{ compute how much light is blocked by opaque and transparent surfaces, and use to scale diffuse and specular terms before adding them to color;\}\}

```
if ( depth < maxDepth ) { // return if depth is too deep
    if ( object is reflective ) {
        rRay = ray in reflection direction from point;
        rColor = RT_trace(rRay, depth + 1);
        scale rColor by specular coefficient and add to color;
    }
    if ( object is transparent ) {
        tRay = ray in refraction direction from point;
        if (total internal reflection does not occur ) {
                tColor = RT_trace(tRay, depth + 1);
                scale tColor by transmission coefficient
                and add to color;
        }
    }
}
return color; // Return the color of the ray
```


Computing \mathbf{R}

$\mathbf{V}+\mathbf{R}=(2 \mathbf{V} \cdot \mathbf{N}) \mathbf{N}$

$\mathbf{R}=(2 \mathbf{V} \cdot \mathbf{N}) \mathbf{N}-\mathbf{V}$

Reflections, no Highlight

Second Order Reflection

Refelction with Highlight

Nine Red Balls

Refraction

Refraction and Wavelength

Computing T

Computing T

Computing T

Parallel to I
$\mathrm{T}=-\left(\cos \left(\theta_{T}\right)-\frac{\eta_{I}}{\eta_{T}} \cos \left(\theta_{I}\right)\right) N-\frac{\eta_{I}}{\eta_{T}} I$
$\cos \left(\theta_{T}\right)=\sqrt{1-\sin ^{2}\left(\theta_{T}\right)}=\sqrt{1-\left(\frac{\eta_{I}}{\eta_{T}}\right)^{2} \sin ^{2}\left(\theta_{I}\right)}$
$=\sqrt{1-\left(\frac{\eta_{I}}{\eta_{T}}\right)^{2}\left(1-\cos ^{2}\left(\theta_{I}\right)\right)}$
$=\sqrt{1-\left(\frac{\eta_{I}}{\eta_{T}}\right)^{2}\left(1-(N \cdot I)^{2}\right)}$

Total Internal Reflection

$$
\cos \left(\theta_{T}\right)=\sqrt{1-\left(\frac{\eta_{I}}{\eta_{T}}\right)^{2}\left(1-(N \cdot I)^{2}\right)}
$$

When is $\cos \left(\theta_{T}\right)$ defined?
When $1-\left(\frac{\eta_{I}}{\eta_{T}}\right)^{2}\left(1-(N \cdot I)^{2}\right) \geq 0$.
If $\eta_{I}>\eta_{T}$ and $N \cdot I$ is close to $0, \cos \left(\theta_{T}\right)$ may not be defined.
Then there is no transmitting ray and we have total internal reflection.

Index of Refraction

The speed of all electromagnetic radiation in vacuum is the same, approximately 3×108 meters per second, and is denoted by c. Therefore, if v is the phase velocity of radiation of a specific frequency in a specific material, the refractive index is given by

$$
\eta=\frac{c}{v}
$$

http://en.wikipedia.org/wiki/Refractive index

Indices of Refraction

Material	$\mathbf{\eta}$ at $\boldsymbol{\lambda}=\mathbf{5 8 9 . 3} \mathbf{~ n m}$
vacuum	1 (exactly)
helium	1.000036
air at STP	1.0002926
water ice	1.31
liquid water $\left(20^{\circ} \mathrm{C}\right)$	1.333
ethanol	1.36
glycerine	1.4729
rock salt	1.516
glass (typical)	1.5 to 1.9
cubic zirconia	2.15 to 2.18
diamond	2.419
	$\underline{\text { http://en. wikipedia.org/wiki/List of indices of refraction }}$
November 6, 2012	College of Computer and Information Science, Northeastern University

One Glass Sphere

Five Glass Balls

A Familiar Scene

Bubble

Milky Sphere

Lens - Carl Andrews 1999

