

CS 4300 Computer Graphics

Professor Fell October 18, 2012

©College of Computer and Information Science, Northeastern University

Intersections

Cohen-Sutherland Clipping

1. Assign a 4 bit <i>out</i> each endpoint.	<i>code</i> to 1100	1000	1001
2. Identify lines that trivially accepted rejected. if (outcode(P) = outconstance)	are or trivially 0100 ode(Q) = 0)	0000	0001
else if (outcode(P) & outcode(Q)) ≠ 0) else test further	reject 0110 at	0010 pove left below rid	0011

Cohen-Sutherland continued

Clip against one boundary at a time, top, left, bottom, right.

Check for trivial accept or reject.

If a line segment PQ falls into the "test further" category then

if (outcode(P) & 1000 \neq 0) replace P with PQ intersect y = top else if (outcode(Q) & 1000 \neq 0) replace Q with PQ intersect y = top go on to next boundary

Liang-Barsky Clipping

Clip window interior is defined by:

 $x = x \le x \le x$

ybottom \leq y \leq ytop

Liang-Barsky continued

Liang-Barsky continued

Put the parametric equations into the inequalities: $x = x_0 + t\Delta x \le x = x = y_0 + t\Delta y \le y = y = y_0$

$$\begin{aligned} -t\Delta x \leq x_0 - x \text{ left} & t\Delta x \leq x \text{ right} - x_0 \\ -t\Delta y \leq y_0 - y \text{ bottom} & t\Delta y \leq y \text{ top} - y_0 \end{aligned}$$

These decribe the interior of the clip window in terms of t.

Liang-Barsky continued

- $\begin{aligned} -t\Delta x \leq x_0 x \text{left} & t\Delta x \leq x \text{right} x_0 \\ -t\Delta y \leq y_0 y \text{bottom} & t\Delta y \leq y \text{top} y_0 \end{aligned}$
- These are all of the form tp ≤ q
- For each boundary, we decide whether to accept, reject, or which point to change depending on the sign of p and the value of t at the intersection of the line with the boundary.

Liang-Barsky Rules

- 0 < t < 1, p < 0 replace V₀
- 0 < t < 1, p > 0 replace V₁
- t < 0, p < 0 no change
- t < 0, p > 0 reject
- t > 1, p > 0 no change
- t > 1, p < 0 reject