CS 4300
 Computer Graphics

Professor Fell
 October 18, 2012

Intersections

We know how to find the intersections of a line segment

$$
P+t(Q-P)
$$

with the 4 boundaries

$$
\begin{aligned}
& x=x \min \\
& x=x \max \\
& y=y \min \\
& y=y \max
\end{aligned}
$$

Cohen-Sutherland Clipping

1. Assign a 4 bit outcode to each endpoint.
2. Identify lines that are trivially accepted or trivially rejected.

1100	1000	1001
0100	0000	0001
0110	0010	0011
above left below right		

Cohen-Sutherland continued

Clip against one boundary at a time, top, left, bottom, right.
Check for trivial accept or reject.
If a line segment PQ falls into the "test further" category then

```
if (outcode(P) & 1000 = 0)
    replace P with PQ intersect y = top
else if (outcode(Q) & 1000 = 0)
    replace Q with PQ intersect y = top
go on to next boundary
```


©College of Computer and Information Science, Northeastern University

Liang-Barsky Clipping

Clip window interior is defined by:

xleft $\leq x \leq$ xright
ybottom $\leq y \leq y t o p$

Liang-Barsky continued

Liang-Barsky continued

Put the parametric equations into the inequalities:

$$
\begin{aligned}
& \text { xleft } \leq x_{0}+t \Delta x \leq x r i g h t \\
& \text { ybottom } \leq y_{0}+t \Delta y \leq \text { ytop }
\end{aligned}
$$

$$
\begin{array}{ll}
-t \Delta x \leq x_{0}-x \text { left } & t \Delta x \leq x \text { right }-x_{0} \\
-t \Delta y \leq y_{0}-\text { ybottom } & t \Delta y \leq \text { ytop }-y_{0}
\end{array}
$$

These decribe the interior of the clip window in terms of t.

Liang-Barsky continued

$$
\begin{array}{ll}
-t \Delta x \leq x_{0}-\text { xleft } & t \Delta x \leq x r i g h t ~
\end{array} x_{0}
$$

- These are all of the form

$$
t \mathrm{p} \leq \mathrm{q}
$$

- For each boundary, we decide whether to accept, reject, or which point to change depending on the sign of p and the value of t at the intersection of the line with the boundary.

Liang-Barsky Rules

- $0<t<1, \mathrm{p}<0$ replace V_{0}
- $0<t<1, p>0$ replace V_{1}
- $\mathrm{t}<0, \mathrm{p}<0$ no change
- $t<0, \mathrm{p}>0$ reject
- $t>1, p>0$ no change
- $\mathrm{t}>1, \mathrm{p}<0$ reject

