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CS 4300 
Computer Graphics 

Prof. Harriet Fell 
CS4300 

Lectures 13,14 – October 3, 4, 10 2012 
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Today’s Topics 

•  Curves 
•  Fitting Curves to Data Points 
•  Splines 
•  Hermite Cubics 
•  Bezier Cubics 
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Curves 
A curve is the continuous image of an interval in n-space. 

Implicit  f(x, y) = 0 x2 + y2 – R2 = 0 

Parametric  (x(t), y(t)) = P(t) P(t) = tA + (1-t)B 
A 

B 

Generative  proc  (x, y) 
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Curve Fitting 

We want a curve that passes 
through control points. 

 interpolating curve 

How do we create a good 
curve? 
What makes a good curve? 

Or a curve that passes near 
control points. 

 approximating curve 
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Axis Independence 

If we rotate the set of control points, we should get the 
rotated curve. 



Local Control 
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Variation Diminishing 

Never crosses a straight line more than 
the polygon crosses it. 
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Continuity 

C0 continuity C1 continuity C2 continuity 

G2 continuity Not C2 continuity 
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How do we Fit Curves? 

Lagrange Interpolating Polynomial from mathworld 

The Lagrange interpolating polynomial is the polynomial  
of degree n-1 that passes through the n points,  

 (x1, y1), (x2, y2), …, (xn, yn),  
and is given by  

   

P x( ) = y1

x − x2( ) x − xn( )
x1 − x2( ) x1 − xn( ) + y2

x − x1( ) x − x3( ) x − xn( )
x2 − x1( ) x2 − x3( ) x2 − xn( ) +

           + yn

x − x1( ) x − xn−1( )
xn − x1( ) xn − xn−1( )

= yi
i=1

n

∑
x − x j( )
xi − x j( )j≠ i

∏
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Example 1 
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Polynomial Fit 

P(x) = -.5x(x-2)(x-3)(x-4) 
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Piecewise Fit 
Pa(x) = 4.1249 x (x - 1.7273) 

 0 ≤  x  ≤  1.5 

Pb(x) = 5.4 x (x - 1.7273) 

 1.5 ≤  x  ≤  1.7273 

Pc(x) = 0 

 1.7273 ≤  x  ≤  4 
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Spline Curves 
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Splines and Spline Ducks 

Marine Drafting Weights  
http://www.frets.com/FRETSPages/Luthier/TipsTricks/DraftingWeights/draftweights.html 
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Drawing Spline Today (esc) 

1.  Draw some curves in PowerPoint. 

2.  Look at Perlin’s B-Spline Applet. 
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Hermite Cubics 

p 

q 
Dp 

Dq 
P(t) = at3 + bt2 +ct +d 

P(0) = p 

P(1) = q 

P'(0) = Dp 

P'(1) = Dq 
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Hermite Coefficients 

( ) 3 2 1

a
b

t t t t
c
d

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

P

P(t) = at3 + bt2 +ct +d 

P(0) = p 

P(1) = q 

P'(0) = Dp 

P'(1) = Dq 
( ) 23 2 1 0

a
b

t t t
c
d

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

P'

For each coordinate, we have 4 linear equations in 4 unknowns  
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Boundary Constraint Matrix 

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

a
b
c
d

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

p
q
Dp
Dq

( ) 3 2 1
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t t t t
c
d

⎡ ⎤
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⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

P

( ) 23 2 1 0

a
b

t t t
c
d

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

P'
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Hermite Matrix 

2 2 1 1
3 3 2 1
0 0 1 0
1 0 0 0

a
b
c
d

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

p
q
Dp
Dq

MH GH 
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Hermite Blending Functions 

( ) 3 2 3 2

2 2 1 1
3 3 2 1

1 1
0 0 1 0
1 0 0 0

t t t t t t t

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

H

p p
q q

P M
Dp Dp
Dq Dq

( ) ( ) ( ) ( ) ( )3 2 3 2 3 2 3 22 3 1 2 3 2t t t t t t t t t t= − + + − + + − + + −P p q Dp Dq

( ) ( ) ( ) ( ) ( )0 1 2 3t H t H t H t H t= + + +P p q Dp Dq
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Splines of Hermite Cubics 

a C1 spline of Hermite curves 

a G1 but not C1 spline of Hermite curves 

The vectors shown are 1/3 the length of the tangent vectors. 
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Computing the Tangent Vectors 
Catmull-Rom Spline 

 p1 

 p2 

 p3 

 p4 

 p5 

P(0) = p3 

P(1) = p4 

P'(0) = ½(p4 - p2 ) 

P'(1) = ½(p5 - p3 ) 
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Cardinal Spline 
The Catmull-Rom spline 

P(0) = p3 

P(1) = p4 

P'(0) = ½(p4 - p2 ) 

P'(1) = ½(p5 - p3 ) 

is a special case of the Cardinal spline 

P(0) = p3 

P(1) = p4 

P'(0) = (1 - t)(p4 - p2 ) 

P'(1) = (1 - t)(p5 - p3 ) 

0 ≤ t ≤ 1 is the tension. 
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Drawing Hermite Cubics 

•  How many points should we draw? 
•  Will the points be evenly distributed if we use a 

constant increment on t ? 

•  We actually draw Bezier cubics. 

( ) ( ) ( ) ( ) ( )3 2 3 2 3 2 3 22 3 1 2 3 2t t t t t t t t t t= − + + − + + − + + −P p q Dp Dq
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General Bezier Curves 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )
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We will only use cubic Bezier curves,   3.
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Low Order Bezier Curves 

p0 

n = 0    b0,0 (t) = 1 

  B(t) = p0 b0,0 (t) = p0   0 ≤ t ≤ 1 

p0 n = 1    b0,1 (t) = 1 - t     b1,1 (t) = t  

  B(t) = (1 - t) p0 + t p1   0 ≤ t ≤ 1 
p1 

p1 

p0 
n = 2  b0,2 (t) = (1 - t)2   b1,2 (t) = 2t (1 - t)   b2,2 (t) = t2   

 B(t) = (1 - t) 2 p0 + 2t (1 - t)p1 + t2 p2        0 ≤ t ≤ 1 
p2 
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Bezier Curves 

Bezier Arch  

p 

q 

r 

s 

n = 3   b0,3 (t) = (1 - t)3    b1,3 (t) = 3t (1 - t)2    

  b2,3 (t) = 3t2(1 - t)  b2,3 (t) = t3  

 B(t) = (1 - t) 3 p + 3t (1 - t)2q + 3t2(1 - t)r + t3s  0 ≤ t ≤ 1 
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Bezier Matrix 

1 3 3 1
3 6 3 0
3 3 0 0
1 0 0 0

a
b
c
d
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p
q
r
s

MB 

B(t) = (1 - t) 3 p + 3t (1 - t)2q + 3t2(1 - t)r + t3s  0 ≤ t ≤ 1 

B(t) = a t 3 + bt2 + ct + d  0 ≤ t ≤ 1 

GB 
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Geometry Vector 

( )

( )

3 2

The Hermite Geometry Vector 

The Bezier Geometry Vector 
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Properties of Bezier Curves 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )( )
3 3 33

,3
1 1
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The curve is tangent to the segments and .

The curve lies in the convex hull of the control points since
3
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Geometry of Bezier Arches 

p 

q 

r 

s 

Pick a t between 0 and 1 and go t of 
the way along each edge. 

B(t) 

Join the endpoints and do it again. 
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Geometry of Bezier Arches 

p 

q 

r 

s 

We only use t = 1/2. 

pqrs = B(1/2) 
pq 

qr 

rs pqr 

qrs 



drawArch(P, Q, R, S){ 
 if (ArchSize(P, Q, R, S) <= .5 ) Dot(P); 
 else{ 
  PQ = (P + Q)/2; 
  QR = (Q + R)/2; 
  RS = (R + S)/2; 

  PQR = (PQ + QR)/2; 
  QRS = (QR + RS)/2; 

  PQRS = (PQR + QRS)/2 

  drawArch(P, PQ, PQR, PQRS); 
  drawArch(PQRS, QRS, RS, S); 
 } 
} 
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Putting it All Together 

•  Bezier Arches 
•  Catmull-Rom Splines 


