CS 4300 Computer Graphics

Prof. Harriet Fell
CS4300
Lectures 13,14 - October 3, 4, 102012

Today’s Topics

- Curves
- Fitting Curves to Data Points
- Splines
- Hermite Cubics
- Bezier Cubics

Curves

A curve is the continuous image of an interval in n-space.

Curve Fitting

We want a curve that passes through control points.

interpolating curve

Or a curve that passes near control points.
approximating curve
How do we create a good curve?
What makes a good curve?

Axis Independence

If we rotate the set of control points, we should get the rotated curve.

Variation:Diminishing

Continuity

G^{2} continuity

Not C^{2} continuity

How do we Fit Curves?

The Lagrange interpolating polynomial is the polynomial of degree $n-1$ that passes through the n points,

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

and is given by

$$
\begin{aligned}
& \mathrm{P}(\mathrm{x})= y_{1} \frac{\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)}{\left(x_{1}-x_{2}\right) \cdots\left(x_{1}-x_{n}\right)}+y_{2} \frac{\left(x-x_{1}\right)\left(x-x_{3}\right) \cdots\left(x-x_{n}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right) \cdots\left(x_{2}-x_{n}\right)}+\cdots \\
&+y_{n} \frac{\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{1}\right) \cdots\left(x_{n}-x_{n-1}\right)} \\
&=\sum_{i=1}^{n} y_{i} \prod_{j \neq i} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right) \quad \quad \text { Lagrange Interpolating Polynomial from mathworld }}
\end{aligned}
$$

Example 1

Polynomial Fit

Piecewise Fit

Spline Curves

Splines and Spline Ducks

Marine Drafting Weights
http://www.frets.com/FRETSPages/Luthier/TipsTricks/DraftingWeights/draftweights.html

Drawing Spline Today (esc)

1. Draw some curves in PowerPoint.
2. Look at Perlin's B-Spline Applet.

Hermite Cubics

$$
\left.\boldsymbol{p}\right|_{\boldsymbol{p}} \underbrace{\boldsymbol{D} \boldsymbol{q}} \begin{aligned}
& \boldsymbol{P}(t)=a t^{3}+b t^{2}+c t+d \\
& \boldsymbol{q} \\
& \\
& \\
& \\
& \\
& \boldsymbol{P}^{\prime}(0)=\boldsymbol{p}(1)=\boldsymbol{q} \\
& \boldsymbol{P}^{\prime}(1)=\boldsymbol{D} \boldsymbol{q}
\end{aligned}
$$

Hermite Coefficients

$$
\begin{array}{lc}
\hline \boldsymbol{P}(t)=a t^{3}+b t^{2}+c t+d \\
\boldsymbol{P}(0)=\boldsymbol{p} \\
\boldsymbol{P}(1)=\boldsymbol{q} \\
\boldsymbol{P}^{\prime}(0)=\boldsymbol{D} \boldsymbol{p} \\
\boldsymbol{P}^{\prime}(1)=\boldsymbol{D} \boldsymbol{q}
\end{array} \quad \boldsymbol{P}(t)=\left[\begin{array}{lll}
t^{3} & t^{2} & t \\
\hline
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

For each coordinate, we have 4 linear equations in 4 unknowns

Boundary Constraint Matrix

$$
\begin{aligned}
& \boldsymbol{P}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \quad\left[\begin{array}{c}
\boldsymbol{p} \\
\boldsymbol{q} \\
\boldsymbol{D} \boldsymbol{p} \\
\boldsymbol{D q}
\end{array}\right]=\left[\begin{array}{l}
\\
\boldsymbol{P}^{\prime}(t)=\left[\begin{array}{llll}
3 t^{2} & 2 t & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
\end{aligned}
$$

Hermite Matrix

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]}_{\boldsymbol{M}_{\boldsymbol{H}}} \underbrace{\left[\begin{array}{c}
\boldsymbol{p} \\
\boldsymbol{q} \\
\boldsymbol{D} \boldsymbol{p} \\
\boldsymbol{D}
\end{array}\right]}_{\boldsymbol{G}_{\boldsymbol{H}}}
$$

Hermite Blending Functions

$$
\begin{aligned}
& \boldsymbol{P}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right] \boldsymbol{M}_{\boldsymbol{H}}\left[\begin{array}{c}
\boldsymbol{p} \\
\boldsymbol{q} \\
\boldsymbol{D} \boldsymbol{p} \\
\boldsymbol{D} \boldsymbol{q}
\end{array}\right]=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{p} \\
\boldsymbol{q} \\
\boldsymbol{D} \boldsymbol{p} \\
\boldsymbol{D} \boldsymbol{q}
\end{array}\right] \\
& \boldsymbol{P}(t)=\boldsymbol{p} 3+\boldsymbol{q}
\end{aligned}
$$

Splines of Hermite Cubics

a C^{1} spline of Hermite curves

a G^{1} but not C^{1} spline of Hermite curves

The vectors shown are $1 / 3$ the length of the tangent vectors.

Computing the Tangent Vectors Catmull-Rom Spline

Cardinal Spline

The Catmull-Rom spline

$$
\begin{array}{ll}
\boldsymbol{P}(0)=\boldsymbol{p}_{3} & \text { is a special case of the Cardinal spline } \\
\boldsymbol{P}(1)=\boldsymbol{p}_{4} & \boldsymbol{P}(0)=\boldsymbol{p}_{3} \\
\boldsymbol{P}^{\prime}(0)=\frac{1}{2}\left(\boldsymbol{p}_{4}-\boldsymbol{p}_{2}\right) & \boldsymbol{P}(1)=\boldsymbol{p}_{4} \\
\boldsymbol{P}^{\prime}(1)=\frac{1}{2}\left(\boldsymbol{p}_{5}-\boldsymbol{p}_{3}\right) & \boldsymbol{P}^{\prime}(0)=(1-t)\left(\boldsymbol{p}_{4}-\boldsymbol{p}_{2}\right) \\
& \boldsymbol{P}^{\prime}(1)=(1-t)\left(\boldsymbol{p}_{5}-\boldsymbol{p}_{3}\right) \\
& 0 \leq t \leq 1 \text { is the tension. }
\end{array}
$$

Drawing Hermite Cubics

$$
\boldsymbol{P}(t)=\boldsymbol{p}\left(2 t^{3}-3 t^{2}+1\right)+\boldsymbol{q}\left(-2 t^{3}+3 t^{2}\right)+\boldsymbol{D} \boldsymbol{p}\left(t^{3}-2 t^{2}+t\right)+\boldsymbol{D} \boldsymbol{q}\left(t^{3}-t^{2}\right)
$$

- How many points should we draw?
- Will the points be evenly distributed if we use a constant increment on t ?
- We actually draw Bezier cubics.

General Bezier Curves

Given $n+1$ control points \boldsymbol{p}_{i}

$$
\boldsymbol{B}(t)=\sum_{k=0}^{n}\binom{n}{k} \boldsymbol{p}_{k}(1-t)^{n-k} t^{k} \quad 0 \leq t \leq 1
$$

where

$$
\begin{aligned}
& b_{k, n}(t)=\binom{n}{k} t^{k}(1-t)^{n-k} \quad k=0, \cdots n \\
& b_{k, n}(t)=(1-t) b_{k, n-1}(t)+t b_{k-1, n-1}(t) \quad 0 \leq k<n
\end{aligned}
$$

We will only use cubic Bezier curves, $n=3$.

Low Order Bezier Curves

$$
\begin{aligned}
& \boldsymbol{p}_{0}^{\bigcirc} \quad n=0 \\
& b_{0,0}(t)=1 \\
& \boldsymbol{B}(t)=\boldsymbol{p}_{\boldsymbol{0}} b_{0,0}(t)=\boldsymbol{p}_{0} \quad 0 \leq t \leq 1 \\
& \boldsymbol{p}_{0} \oint_{\boldsymbol{p}_{1}} n=1 \\
& b_{0, l}(t)=1-t \quad b_{1, l}(t)=t \\
& \boldsymbol{B}(t)=(1-t) \boldsymbol{p}_{0}+t \boldsymbol{p}_{1} \quad 0 \leq t \leq 1
\end{aligned}
$$

Bezier Curves

Bezier Matrix

$$
\begin{aligned}
& \boldsymbol{B}(t)=(1-t)^{3} \boldsymbol{p}+3 t(1-t)^{2} \boldsymbol{q}+3 t^{2}(1-t) \boldsymbol{r}+t^{3} \boldsymbol{s} \\
& \boldsymbol{B}(t)=\boldsymbol{a} \boldsymbol{t}^{3}+\boldsymbol{b} \mathrm{t}^{2}+\boldsymbol{c t}+\boldsymbol{d} \\
& {\left[\begin{array}{l}
a \leq t \leq 1 \\
b \\
c \\
d
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]}_{\boldsymbol{M}_{\boldsymbol{B}}} \underbrace{\left[\begin{array}{c}
\boldsymbol{p} \\
\boldsymbol{q} \\
\boldsymbol{r} \\
\boldsymbol{s}
\end{array}\right]}_{\boldsymbol{G}_{\boldsymbol{B}}}}
\end{aligned}
$$

Geometry Vector

The Hermite Geometry Vector $G_{H}=\left[\begin{array}{c}\boldsymbol{p} \\ \boldsymbol{q} \\ \boldsymbol{D} \boldsymbol{p} \\ \boldsymbol{D} \boldsymbol{q}\end{array}\right] \quad H(t)=T M_{H} G_{H}$
The Bezier Geometry Vector $G_{B}=\left[\begin{array}{c}\boldsymbol{p} \\ \boldsymbol{q} \\ \boldsymbol{r} \\ \boldsymbol{s}\end{array}\right] \quad B(t)=T M_{B} G_{B}$ $T=\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right]$

Properties of Bezier Curves

$$
\begin{array}{ll}
\boldsymbol{P}(0)=\boldsymbol{p} & \boldsymbol{P}(1)=\boldsymbol{s} \\
\boldsymbol{P}^{\prime}(0)=3(\boldsymbol{q}-\boldsymbol{p}) & \boldsymbol{P}^{\prime}(1)=3(\boldsymbol{s}-\boldsymbol{r})
\end{array}
$$

The curve is tangent to the segments $\boldsymbol{p q}$ and $\boldsymbol{r} \boldsymbol{s}$.

The curve lies in the convex hull of the control points since

$$
\sum_{k=1}^{3} b_{k, 3}(t)=\sum_{k=1}^{3}\binom{3}{k}(1-t)^{k} t^{3-k}=((1-t)+t)^{3}=1
$$

Geometry of Bezier Arches

Geometry of Bezier Arches

We only use $t=1 / 2$.

```
drawArch(P, Q, R, S) {
    if (ArchSize(P, Q, R, S) <= .5 ) Dot(P);
    else{
        PQ = (P + Q)/2;
        QR = (Q + R)/2;
        RS = (R + S)/2;
        PQR = (PQ + QR)/2;
        QRS = (QR + RS)/2;
        PQRS = (PQR + QRS)/2
        drawArch(P, PQ, PQR, PQRS);
        drawArch(PQRS, QRS, RS, S);
    }
}
```


Putting it All Together

- Bezier Arches
- Catmull-Rom Splines

