CS 4300 Computer Graphics

Prof. Harriet Fell Fall 2012
 Lecture 11 - September 27, 2012

Today's Topics

- Linear Algebra Review
- Matrices
- Transformations
- New Linear Algebra
- Homogeneous Coordinates

Matrices

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad B=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right] \quad C=\left[\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24} \\
c_{31} & c_{32} & c_{33} & c_{34} \\
c_{41} & c_{42} & c_{43} & c_{44}
\end{array}\right]
$$

- We use $2 \times 2,3 \times 3$, and 4×4 matrices in computer graphics.
- We'll start with a review of 2D matrices and transformations.

Basic 2D Linear Transforms

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right] \quad\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right]
$$

Scale by . 5

Scaling by .5

General Scaling

General Scaling

Rotation

Rotation

$$
\operatorname{rot}(\varphi)=
$$

Reflection in y-axis

Reflection in y-axis

Reflection in x-axis

Reflection in x-axis

Shear-x

shear-x $(s)=$

Shear x

Shear-y

shear- $-\mathrm{y}(\mathrm{s})=$ $\left[\begin{array}{ll}1 & 0 \\ s & 1\end{array}\right]$

Shear y

Linear Transformations

- Scale, Reflection, Rotation, and Shear are all linear transformations
- They satisfy: $\mathrm{T}(a \mathbf{u}+b \mathbf{v})=a \mathrm{~T}(\mathbf{u})+b \mathrm{~T}(\mathbf{v})$
- \mathbf{u} and \mathbf{v} are vectors
- a and b are scalars
- If T is a linear transformation
- $T((0,0))=(0,0)$

Composing Linear Transformations

- If T_{1} and T_{2} are transformations
- $\mathrm{T}_{2} \mathrm{~T}_{1}(\mathbf{v})=_{\text {def }} \mathrm{T}_{2}\left(\mathrm{~T}_{1}(\mathbf{v})\right)$
- If T_{1} and T_{2} are linear and are represented by matrices M_{1} and M_{2}
- $T_{2} T_{1}$ is represented by $M_{2} M_{1}$
- $\mathrm{T}_{2} \mathrm{~T}_{1}(\mathbf{v})=\mathrm{T}_{2}\left(\mathrm{~T}_{1}(\mathbf{v})\right)=\left(\mathrm{M}_{2} \mathrm{M}_{1}\right)(\mathbf{v})$

Reflection About an Arbitrary Line (through the origin)

Reflection as a Composition

Decomposing Linear Transformations

- Any 2D Linear Transformation can be decomposed into the product of a rotation, a scale, and a rotation if the scale can have negative numbers.
- $M=R_{1} S R_{2}$

Rotation about an Arbitrary Point

This is not a linear transformation. The origin moves.

Translation

This is not a linear transformation. The origin moves.

Homogeneous Coordinates

2D Linear Transformations as 3D Matrices

Any 2D linear transformation can be represented by a 2×2 matrix

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a_{11} x+a_{12} y \\
a_{21} x+a_{22} y
\end{array}\right]
$$

or a 3×3 matrix

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a_{11} x+a_{12} y \\
a_{21} x+a_{22} y \\
1
\end{array}\right]
$$

2D Linear Translations as 3D Matrices

Any 2D translation can be represented by a 3×3 matrix.

$$
\left[\begin{array}{lll}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+a \\
y+b \\
1
\end{array}\right]
$$

This is a 3D shear that acts as a translation on the plane $z=1$.

Translation as a Shear

2D Affine Transformations

- An affine transformation is any transformation that preserves co-linearity (i.e., all points lying on a line initially still lie on a line after transformation) and ratios of distances (e.g., the midpoint of a line segment remains the midpoint after transformation).
- With homogeneous coordinates, we can represent all 2D affine transformations as 3D linear transformations.
- We can then use matrix multiplication to transform objects.

Rotation about an Arbitrary Point

Rotation about an Arbitrary Point

Windowing Transforms

3D Transformations

Remember:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \leftrightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

A 3D linear transformation can be represented by a 3×3 matrix.

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \leftrightarrow\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & 0 \\
a_{21} & a_{22} & a_{22} & 0 \\
a_{31} & a_{32} & a_{33} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Affine Transformations

$\operatorname{scale}\left(s_{x}, s_{y}, s_{z}\right)=\left[\begin{array}{cccc}s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\operatorname{translate}\left(t_{x}, t_{y}, t_{z}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Rotations

$\operatorname{rotate}_{\mathrm{x}}(\theta)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) & 0 \\ 0 & \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\operatorname{rotate}_{\mathrm{z}}(\theta)$

0 \& 1 \& 0 \& 0

-\sin (\theta) \& 0 \& \cos (\theta) \& 0

0 \& 0 \& 0 \& 1\end{array}\right]\)

